Dietary α-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis via ameliorating lipid homeostasis at adipose tissue-liver axis in mice

نویسندگان

  • Meng Wang
  • Xiao-Jing Zhang
  • Kun Feng
  • Chengwei He
  • Peng Li
  • Yuan-Jia Hu
  • Huanxing Su
  • Jian-Bo Wan
چکیده

Low levels of n-3 polyunsaturated fatty acids (PUFAs) in serum and liver tissue biopsies are the common characteristics in patients with alcoholic liver disease. The α-linolenic acid (ALA) is a plant-derived n-3 PUFA and is rich in flaxseed oil. However, the impact of ALA on alcoholic fatty liver is largely unknown. In this study, we assessed the potential protective effects of ALA-rich flaxseed oil (FO) on ethanol-induced hepatic steatosis and observed that dietary FO supplementation effectively attenuated the ethanol-induced hepatic lipid accumulation in mice. Ethanol exposure stimulated adipose lipolysis but reduced fatty acid/lipid uptake, which were normalized by FO. Our investigations into the corresponding mechanisms demonstrated that the ameliorating effect of FO might be associated with the lower endoplasmic reticulum stress and normalized lipid metabolism in adipose tissue. In the liver, alcohol exposure stimulated hepatic fatty acid uptake and triglyceride synthesis, which were attenuated by FO. Additionally, dietary FO upregulated plasma adiponectin concentration, hepatic adiponectin receptor 2 expression, and the activation of hepatic adenosine monophosphate-activated protein kinase. Collectively, dietary FO protects against alcoholic hepatic steatosis by improving lipid homeostasis at the adipose tissue-liver axis, suggesting that dietary ALA-rich flaxseed oil might be a promising approach for prevention of alcoholic fatty liver.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dietary Rosa mosqueta (Rosa rubiginosa) oil prevents high diet-induced hepatic steatosis in mice.

The effects of dietary Rosa mosqueta (RM, Rosa rubiginosa) oil, rich in α-linolenic acid, in the prevention of liver steatosis were studied in mice fed a high fat diet (HFD). C57BL/6j mice were fed either a control diet or HFD with or without RM oil for 12 weeks. The results indicate that RM oil supplementation decreases fat infiltration of the liver from 43.8% to 6.2%, improving the hepatic ox...

متن کامل

Oils Rich in alpha-linolenic acid independently protect against characteristics of fatty liver disease in the delta-6 desaturase null mouse

The biological activity of α-linolenic acid (ALA) is poorly understood and primarily associated with its conversion to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). This study used the Δ6 desaturase knockout (D6KO) mouse, which lacks Δ6 desaturase and therefore cannot convert ALA, to evaluate the independent effects of ALA on preventing non-alcoholic fatty liver disease (NAFLD). F...

متن کامل

Dietary Flaxseed Oil Prevents Western-Type Diet-Induced Nonalcoholic Fatty Liver Disease in Apolipoprotein-E Knockout Mice

The prevalence of nonalcoholic fatty liver disease (NAFLD) has dramatically increased globally during recent decades. Intake of n-3 polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3), is believed to be beneficial to the development of NAFLD. However, little information is available with regard to the effect of flaxseed oil ...

متن کامل

Flaxseed Oil Containing α-Linolenic Acid Ester of Plant Sterol Improved Atherosclerosis in ApoE Deficient Mice

Plant sterols (PS) have potential preventive function in atherosclerosis due to their cholesterol-lowering ability. Dietary α-linolenic acid in flaxseed oil is associated with a reduction in cardiovascular events through its hypolipidemic and anti-inflammation properties. This study was designed to evaluate the effects of flaxseed oil containing α-linolenic acid ester of PS (ALA-PS) on atherosc...

متن کامل

CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis

Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG in the liver of patients with nonalcoholic fatty liver diseases. Here we show that the liver-enr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016